### LANGKAH-LANGKAH UJI LINIERITAS

1. Contoh berikut menggunakan variabel TQM yang menggunakan 11 indikator. Masukan data rata-rata setiap indikator pada program SPSS, Seperti pada tampilan berikut ini:

| ta Langkah | n-Langkah Uji Lir | nearitas.sav [Dat | taSet2] - IBM SP | SS Statistics Da      | ata Editor            | A 11               |           |      |                 |                 |             | - 🗆 🗙               |
|------------|-------------------|-------------------|------------------|-----------------------|-----------------------|--------------------|-----------|------|-----------------|-----------------|-------------|---------------------|
|            |                   | Iransform Ar      | alyze Direct M   | jarketing <u>G</u> ra | pns <u>U</u> tilities | Add-ons <u>vvi</u> | ndow Help |      |                 |                 |             |                     |
|            |                   | r a               | le 🔚 🗐           | I M 🕈                 | 5 🕺 🚆                 |                    |           |      |                 |                 |             |                     |
|            |                   |                   |                  |                       |                       |                    |           |      |                 |                 | Visible: 16 | of 16 Variable      |
|            | X1                | X2                | X3               | X4                    | X5                    | X6                 | X7        | X8   | X9              | X10             | X11         | Y1                  |
| 1          | 4,40              | 4,71              | 3,83             | 3,50                  | 5,00                  | 4,80               | 4,86      | 4,00 | 5,00            | 5,00            | 4,75        | 2,00                |
| 2          | 3,80              | 4,29              | 3,17             | 3,75                  | 4,50                  | 4,80               | 3,57      | 3,75 | 4,00            | 4,00            | 3,75        | 3,33                |
| 3          | 4,90              | 4,86              | 4,00             | 4,00                  | 5,00                  | 5,00               | 4,14      | 4,25 | 4,50            | 4,60            | 5,00        | 2,00                |
| 4          | 4,20              | 3,86              | 4,00             | 3,75                  | 4,83                  | 4,60               | 4,57      | 3,75 | 4,25            | 4,40            | 4,00        | 3,33                |
| 5          | 4,40              | 4,57              | 4,67             | 3,25                  | 4,17                  | 5,00               | 4,43      | 3,50 | 4,00            | 4,80            | 3,25        | 2,00                |
| 6          | 4,30              | 4,71              | 3,67             | 3,50                  | 4,00                  | 4,80               | 3,57      | 4,50 | 4,25            | 4,00            | 3,00        | 2,00                |
| 7          | 5,00              | 5,00              | 4,83             | 4,75                  | 5,00                  | 5,00               | 4,14      | 4,25 | 4,25            | 4,00            | 3,25        | 3,33                |
| 8          | 2,80              | 2,57              | 3,67             | 3,00                  | 4,17                  | 4,00               | 3,43      | 2,50 | 2,75            | 2,80            | 3,00        | 4,00                |
| 9          | 4,10              | 3,43              | 4,00             | 3,50                  | 4,00                  | 4,80               | 3,71      | 3,50 | 3,25            | 3,80            | 2,75        | 4,00                |
| 10         | 2,90              | 3,57              | 2,83             | 3,50                  | 3,50                  | 4,00               | 2,71      | 2,25 | 3,50            | 3,40            | 3,75        | 3,33                |
| 11         | 3,80              | 3,14              | 3,83             | 3,75                  | 3,67                  | 4,60               | 3,86      | 2,75 | 4,50            | 4,00            | 3,75        | 3,67                |
| 12         | 3,90              | 4,00              | 4,00             | 4,00                  | 4,00                  | 4,00               | 4,00      | 3,00 | 3,75            | 4,00            | 4,00        | 3,33                |
| 13         | 4,40              | 4,29              | 4,00             | 3,50                  | 4,33                  | 5,00               | 4,43      | 4,50 | 4,25            | 4,40            | 5,00        | 3,33                |
| 14         | 4,30              | 4,43              | 3,17             | 4,00                  | 4,17                  | 4,00               | 3,71      | 3,50 | 3,50            | 4,00            | 4,50        | 5,00                |
| 15         | 4,00              | 4,14              | 4,00             | 5,00                  | 3,67                  | 4,80               | 3,86      | 4,50 | 3,75            | 4,40            | 5,00        | 2,67                |
| 16         | 4,20              | 4,43              | 3,83             | 4,25                  | 4,00                  | 4,00               | 4,00      | 4,25 | 3,50            | 4,80            | 3,50        | 4,67                |
| 17         | 3,70              | 4,57              | 4,00             | 4,00                  | 4,50                  | 5,00               | 4,00      | 3,25 | 3,00            | 3,80            | 4,00        | 3,33                |
| 18         | 4,40              | 4,71              | 4,33             | 4,50                  | 4,50                  | 4,20               | 4,29      | 3,50 | 3,50            | 2,80            | 3,75        | 3,00                |
| 19         | 4,30              | 4,14              | 4,00             | 3,75                  | 5,00                  | 4,20               | 4,14      | 4,00 | 4,25            | 4,80            | 3,50        | 5,00                |
| 20         | 3.80              | 1 20              | 4.00             | 3 75                  | 1 23                  | 4.00               | 1 11      | 2 75 | 3.50            | 4.60            | 3.00        | 1 90                |
| Data Viev  | Variable View     |                   |                  |                       |                       | ***                |           |      |                 |                 |             |                     |
|            | <b>_</b>          |                   |                  |                       |                       |                    |           | IBI  | M SPSS Statisti | cs Processor is | ready       |                     |
|            | 2 0               |                   | <b>1</b>         |                       | ٨.                    | 2                  |           |      | -               | N 🔺 🔐 🖡         | ba ank ∎ ,  | 10:59<br>08/09/2013 |

- 2. Langkah berikutnya;
  - a. Klik Analyze
  - b. Klik Dimension Reduction
  - c. Klik Factor

seperti pada tampilan di bawah ini:

|   | Analyze C        | )irect <u>M</u> arketing | <u>G</u> rapl | ns <u>U</u> tilit | ies <i>i</i> | Add- <u>o</u> ns | Win   | dow | <u>Η</u> ε |
|---|------------------|--------------------------|---------------|-------------------|--------------|------------------|-------|-----|------------|
|   | Reports          | s                        |               |                   |              |                  |       | A   | 9          |
|   | D <u>e</u> scrip | otive Statistics         | •             |                   |              |                  |       |     |            |
|   | Tables           |                          | •             |                   |              |                  |       | 27  | 0000       |
|   | Compa            | re Means                 |               | X5                |              | X6               |       | Х   | .7         |
|   | Genera           | l Linear Model           |               | 5                 | ,00          | 4,               | 80    |     | 4          |
|   | Gonora           | lized Linear Mod         |               | 4                 | ,50          | 4,               | 80    |     | 1          |
| 1 | Uenera           |                          |               | 5                 | ,00          | 5,               | 00    |     | 2          |
|   | Mixed I          | lodels                   |               | 4                 | ,83          | 4,               | 60    |     | 2          |
|   | <u>C</u> orrela  | te                       | •             | 4                 | .17          | 5.               | 00    |     | 2          |
|   | Regres           | sion                     |               | 4                 | 00           | 4                | 80    |     |            |
|   | Logline          | ar                       | •             | 5                 | 00           | .,               | 00    |     |            |
|   | Neural           | Networks                 | •             |                   | 47           |                  | 00    |     |            |
| 1 | Classifi         |                          |               | 4                 | , 17         | 4,               | 00    |     | 1          |
| í | Dimon            | y<br>Sina Daduntina      |               | 4                 | .00          | 4.               | 80    |     | _          |
|   | Dimens           | sion Reduction           |               | A Fac             | tor          |                  |       |     |            |
|   | Sc <u>a</u> le   |                          | <u>.</u>      | Con               | respo        | ndence Ar        | nalys | is  |            |
| ( | <u>N</u> onpar   | ametric Tests            | •             | Optimal Scaling   |              |                  |       |     |            |

3. Kemudian akan muncul kotak dialog Factor Analysis. Kemudian 11 Indikator dari sebelah kiri Di Masukan ke seleha kanan, seperti pada tampilan di bawah ini:



- 4. Langkah selanjutnya :
  - a. Klik Scores
  - b. Klik / Aktivkan Save as Variabels, Seperti pada tampilan di bawah ini:



- 5. Langkah selanjutnya
  - a. Klik Continue
  - b. Klik OK
- 6. Selanjutnya membaca hasil output spss. Untuk membaca output spss di lihat pada Component Matrix sebagai berikut:

|            | Compoi            | Component       |          |
|------------|-------------------|-----------------|----------|
|            | 1                 | 2               | 3        |
| X1         | ,800              | ,209            | ,086     |
| X2         | ,782              | ,149            | ,166     |
| X3         | ,647              | ,363            | -,502    |
| X4         | ,150              | ,865            | ,305     |
| X5         | ,724              | -,215           | -,306    |
| X6         | ,592              | ,289            | -,178    |
| X7         | ,803              | -,278           | -,141    |
| X8         | ,805              | ,138            | ,074     |
| X9         | ,714              | -,331           | ,162     |
| X10        | ,678              | -,394           | ,090     |
| X11        | ,368              | -,129           | ,772     |
| Extraction | Method: Principa  | al Component Ar | nalysis. |
| a. 3 compo | onents extracted. |                 |          |

Cara membaca Hasil Output SPSS:

- a. Componen matrix berfungsi untuk mereduksi indikator yang bukan pembentuk variabel. Tujuan Componen matrix ini untuk mencari 1 Componen matrix pembentuk Variabel. Hasil contoh di atas terdapat 3 component pembentuk variabel. Maka indikator yang bukan pembentuk variabel harus di DROOP/ atau dikeluarkan.
- b. Kriteria Indikator disebut sebagai pembentuk variabel apabila nilai indikator di atas 0,50. Sedangkan apabila ada nilai indikator di bawah 0,50, berarti indikator tersebut bukan merupakan pembentuk indikator.
- c. Pada contoh hasil output di atas, terdapat 2 indikator yang bukan merupakan pembentuk variabel, Yaitu X4 dengan nilai 0,150 dan X11 dengan nilai sebesar 0,368. Dengan demikian untuk indikator X 4 dan X 11 di DROOP atau dikeluarkan dari komponen pembentuk variabel.
- 7. Kemudian dilakukan analisis lagi, dengan langkah-langkah sebagai berikut:
  - a. Klik Analysis
  - b. Klik Dimension reduction
  - c. Klik Factor
  - d. Kemudian X4 dan X11 dikeluarkan dari analisis, seperti pada tampilan di bawah ini:



- e. Selanjutnya klik Scores
- f. Klik Save as variables
- g. Klik Continue
- h. Klik OK

Selanjutnya membaca hasil output spss sebagai berikut:

| Comp       | oonent Matrix <sup>a</sup> |
|------------|----------------------------|
|            | Component                  |
|            | 1                          |
| X1         | ,798                       |
| X2         | ,774                       |
| X3         | ,664                       |
| X5         | ,739                       |
| X6         | ,597                       |
| X7         | ,805                       |
| X8         | ,798                       |
| X9         | ,711                       |
| X10        | ,686                       |
| Extraction | Method: Principal          |
| Componen   | it Analysis.               |
| a. 1 compo | onents extracted.          |
|            |                            |

Setelah berhasil mencapai 1 Component matrix, maka component matrik tersebut berfungsi sebagai pembentuk variabel TQM.

Selanjutnya memberikan nama pada spss di kolom variable view dengan nama TQM pada Name dan Label, seperti pada tampilan di bawah ini

| tangka    | *Langkah-Langkah Uji Linearitas.sav [DataSet2] - IBM SPSS Statistics Data Editor |         |          |          |               |        |         |         |                |                       |                            |
|-----------|----------------------------------------------------------------------------------|---------|----------|----------|---------------|--------|---------|---------|----------------|-----------------------|----------------------------|
|           |                                                                                  |         |          |          |               |        |         | AB6     |                |                       |                            |
|           | Name                                                                             | Туре    | Width    | Decimals | Label         | Values | Missing | Columns | Align          | Measure               | Role                       |
| 1         | X1                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | 端 Right        | 🛷 Scale               | S Input                    |
| 2         | X2                                                                               | Numeric | 8        | 2        | T             | None   | None    | 8       | Right          | 🛷 Scale               | S Input                    |
| 3         | X3                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | 這 Right        | I Scale               | > Input                    |
| 4         | X4                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | 疆 Right        | 🛷 Scale               | > Input                    |
| 5         | X5                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | 端 Right        | 🛷 Scale               | S Input                    |
| 6         | X6                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | 疆 Right        | 🛷 Scale               | > Input                    |
| 7         | X7                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | ■ Right        | 🛷 Scale               | > Input                    |
| 8         | X8                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | ≡ Right        | 🛷 Scale               | > Input                    |
| 9         | X9                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | ≡ Right        | 🛷 Scale               | > Input                    |
| 10        | X10                                                                              | Numeric | 8        | 2        |               | None   | None    | 8       | 遍 Right        | 🛷 Scale               | > Input                    |
| 11        | X11                                                                              | Numeric | 8        | 2        |               | None   | None    | 8       | ≡ Right        | 🛷 Scale               | > Input                    |
| 12        | Y1                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | ≡ Right        | 🛷 Scale               | > Input                    |
| 13        | Y2                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | ≡ Right        | 🛷 Scale               | > Input                    |
| 14        | Y3                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | ■ Right        | 🛷 Scale               | > Input                    |
| 15        | Y4                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | ■ Right        | 🛷 Scale               | > Input                    |
| 16        | Y5                                                                               | Numeric | 8        | 2        |               | None   | None    | 8       | 3 Right        | 🛷 Scale               | > Input                    |
| 17        | FAC1_1                                                                           | Numeric | 11       | 5        | REGR factor s | None   | None    | 13      | ≡ Right        | 🖋 Scale               | > Input                    |
| 18        | FAC2_1                                                                           | Numeric | 11       | 5        | REGR factor s | None   | None    | 13      | ■ Right        | 🛷 Scale               | > Input                    |
| 19        | FAC3_1                                                                           | Numeric | 11       | 5        | REGR tector s | None   | None    | 13      | ■ Right        | I Scale               | > Input                    |
| 20        | TQM                                                                              | Numeric | 11       | 5        | ТОМ           | None   | None    | 13      | ■ Right        | I Scale               | > Input                    |
| 21        |                                                                                  |         |          |          |               |        |         |         | No. 1          |                       |                            |
| Data View | Variable Vi                                                                      | iew 🔶   | ŀ        | lik      |               |        |         |         |                |                       |                            |
|           | $\tilde{\boldsymbol{e}}$                                                         |         | <b>1</b> | <b>1</b> |               | 2      |         | l       | RM SPSS Static | tics Processor is rea | dy 12:16<br>∰ ↓ 08/09/2013 |

SELANJUTNYA, MELAKUKAN HAL YANG SAMA PADA VARIABEL KINERJA.

| tangka                   | ah-Langkah Uji L         | inearitas.sav [D | ataSet2] - IBM S | PSS Statistics D | Data Editor           | and in Conservation | and the second second |                        |                |                  |
|--------------------------|--------------------------|------------------|------------------|------------------|-----------------------|---------------------|-----------------------|------------------------|----------------|------------------|
| <u>File</u> <u>E</u> dit | <u>View</u> <u>D</u> ata | Transform A      | nalyze Direct    | Marketing Gra    | phs <u>U</u> tilities | Add-ons Window      | lelp                  |                        |                |                  |
|                          | 🖨 🛄                      |                  |                  | i h 🕴            | 5 🖬 🗧                 |                     | õ 🌑 🐴                 |                        |                |                  |
|                          |                          |                  |                  |                  |                       |                     |                       |                        | Visible: 20 of | 20 Variable      |
|                          | ¥1                       | Y2               | ¥3               | Y4               | ¥5                    | FAC1_1              | FAC2_1                | FAC3_1                 | TQM            | var              |
| 1                        | 2,00                     | 3,00             | 3,67             | 3,00             | 4,00                  | 1,55853             | -1,41562              | ,70006                 | 1,51026        | 1                |
| 2                        | 3,33                     | 3,33             | 3,33             | 4,00             | 3,67                  | -,19206             | -,05341               | ,32988                 | -,19002        |                  |
| 3                        | 2,00                     | 4,00             | 4,33             | 5,00             | 4,00                  | 1,48062             | ,10737                | 1,09996                | 1,37512        |                  |
| 4                        | 3,33                     | 4,00             | 4,33             | 4,00             | 4,00                  | ,61718              | -,55159               | -,41355                | ,62130         |                  |
| 5                        | 2,00                     | 4,00             | 2,67             | 4,00             | 5,00                  | ,77136              | -,09968               | -1,51227               | ,89239         |                  |
| 6                        | 2,00                     | 4,00             | 4,00             | 3,67             | 4,00                  | ,20653              | ,41201                | -,37499                | ,31544         |                  |
| 7                        | 3,33                     | 3,67             | 4,67             | 3,33             | 4,00                  | 1,38992             | 1,90025               | -1,15093               | 1,45243        |                  |
| 8                        | 4,00                     | 4,00             | 4,67             | 4,33             | 4,00                  | -2,25463            | -,28917               | -1,87876               | -2,17510       |                  |
| 9                        | 4,00                     | 4,00             | 4,33             | 3,67             | 3,33                  | -,65810             | ,64512                | -1,67854               | -,53335        |                  |
| 10                       | 3,33                     | 4,00             | 2,67             | 4,00             | 4,00                  | -2,20515            | -,23447               | ,87096                 | -2,24923       |                  |
| 11                       | 3,67                     | 4,33             | 4,00             | 3,67             | 5,00                  | -,63071             | -,25467               | -,04027                | -,63596        |                  |
| 12                       | 3,33                     | 3,67             | 4,33             | 3,33             | 3,67                  | -,42814             | ,15878                | ,22440                 | -,46984        |                  |
| 13                       | 3,33                     | 3,67             | 4,33             | 3,33             | 5,00                  | ,97923              | -,30999               | ,87539                 | ,88335         |                  |
| 14                       | 5,00                     | 5,00             | 4,33             | 4,33             | 4,00                  | -,33696             | ,13331                | 1,55926                | -,44189        |                  |
| 15                       | 2,67                     | 4,00             | 3,67             | 3,33             | 3,33                  | ,29390              | 1,54472               | 1,84678                | ,10204         |                  |
| 16                       | 4,67                     | 4,67             | 4,67             | 4,67             | 5,00                  | ,10242              | ,44928                | ,26758                 | ,11766         |                  |
| 17                       | 3,33                     | 3,00             | 3,00             | 3,00             | 3,00                  | -,12245             | ,93489                | -,45954                | -,15255        |                  |
| 18                       | 3,00                     | 4,33             | 5,00             | 3,67             | 4,00                  | ,07873              | 1,64982               | -,42822                | ,05397         |                  |
| 19                       | 5,00                     | 4,67             | 5,00             | 3,33             | 4,67                  | ,61507              | -,59769               | -,60311                | ,67667         |                  |
| 20                       | 1 00                     | 4.00             | 4.00             | 1 33             | 5.00                  | 11783               | 15124                 | 07274                  | 02062          |                  |
| Data Viev                | Variable View            |                  |                  |                  |                       | ***                 |                       |                        |                |                  |
|                          |                          | V V              | 1                |                  |                       |                     | IBM                   | SPSS Statistics Proces | sor is ready   |                  |
|                          | 6 0                      |                  | 1                |                  | ٨.                    | 2                   |                       | IN 🔺                   | 1<br>08/0      | .2:29<br>09/2013 |

1. Kembali pada data view seperti pada tampilan di bawah ini:

2. Klik Analyze

- 3. Klik Dimension Reduction
- 4. Klik Factor
- 5. Masukan Y1 Y5 ke sebelah kanan, seperti pada tampilan di bawah ini

| Factor Analysis | 1.000    | 1.4000             | X            |
|-----------------|----------|--------------------|--------------|
|                 |          | Variables:         | Descriptives |
| ✓ X5            | <b>^</b> | <i>₫</i> Y1        | Extraction   |
| ✓ X6            |          | & Y2               |              |
|                 |          | I Y3               | Rotation     |
| N8              | *        |                    | Scores       |
| N9 X9           |          | IN Y5              | Ontions      |
| IN X10          |          |                    |              |
| 🖋 X11           |          |                    |              |
| REGR factor     |          | Selection Variable |              |
| REGR factor     | •        |                    | 1            |
| REGR factor     |          |                    | 1            |
| 🛷 TQM [TQM]     | -        | Value              |              |
| ОК              | Paste    | Reset Cancel H     | lelp         |

- 6. Klik Score
- 7. Klik Save as variables
- 8. Klik Continue
- 9. Klik OK

Hasil output spss. Seperti pada tampilan di bawah ini:

| Component Matrix <sup>a</sup> |                  |              |  |  |  |  |  |
|-------------------------------|------------------|--------------|--|--|--|--|--|
|                               | Comp             | onent        |  |  |  |  |  |
|                               | 1                | 2            |  |  |  |  |  |
| Y1                            | ,751             | -,358        |  |  |  |  |  |
| Y2                            | ,867             | ,020         |  |  |  |  |  |
| Y3                            | ,675             | -,524        |  |  |  |  |  |
| Y4                            | ,487             | ,715         |  |  |  |  |  |
| Y5                            | ,625             | ,411         |  |  |  |  |  |
| Extraction                    | Method: Principa | al Component |  |  |  |  |  |
| a 2 comp                      | onents extracted |              |  |  |  |  |  |
| a. 2 comp                     |                  |              |  |  |  |  |  |
|                               |                  |              |  |  |  |  |  |

Kemudian membaca hasil output spss.

- a. Pada contoh hasil output di atas, terdapat 1 indikator yang bukan merupakan pembentuk variabel, Yaitu Y4 dengan nilai 0,487. Dengan demikian untuk indikator Y 4 di DROOP atau dikeluarkan dari komponen pembentuk variabel.
- b. Kemudian dilakukan pengujian lagi, tanpa Y 4 seperti di bawah ini.

| Y4 Sudah di DROOP<br>Atau dikeluarkan dari pembentuk<br>variabel | Image: Pactor Analysis   Variables:   Descriptives     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis   Image: Pactor Analysis   Image: Pactor Analysis     Image: Pactor Analysis |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | OK Paste Reset Cancel Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

- c. Klik Score
- d. Klik Save as variables
- e. Klik Continue
- f. Klik OK

Hasil output spss, seperti pada tampilan di bawah ini:

| Component Matrix <sup>a</sup> |                   |  |  |  |  |  |
|-------------------------------|-------------------|--|--|--|--|--|
|                               | Component         |  |  |  |  |  |
|                               | 1                 |  |  |  |  |  |
| Y1                            | ,796              |  |  |  |  |  |
| Y2                            | ,851              |  |  |  |  |  |
| Y3                            | ,738              |  |  |  |  |  |
| Y5                            | ,590              |  |  |  |  |  |
| Extraction                    | Method: Principal |  |  |  |  |  |
| Componer                      | nt Analysis.      |  |  |  |  |  |
| a. 1 compo                    | onents extracted. |  |  |  |  |  |
|                               |                   |  |  |  |  |  |
|                               |                   |  |  |  |  |  |

Setelah berhasil mencapai 1 Component matrix, maka component matrik tersebut berfungsi sebagai pembentuk variabel yang kedua, yaitu variabel Kinerja.

Selanjutnya memberikan nama pada spss di kolom variable view dengan nama kinerja pada Name dan Label, seperti pada tampilan di bawah ini

| ta *Langka | *Langkah-Langkah Uji Linearitas.sav (DataSet2) - IBM SPSS Statistics Data Editor |         |          |                      |               |        |         |         |                  |                     |            |
|------------|----------------------------------------------------------------------------------|---------|----------|----------------------|---------------|--------|---------|---------|------------------|---------------------|------------|
|            |                                                                                  |         |          |                      |               |        |         | A#6     |                  |                     |            |
|            | Name                                                                             | Туре    | Width    | Decimals             | Label         | Values | Missing | Columns | Align            | Measure             | Role       |
| 5          | X5                                                                               | Numeric | 8        | 2                    | <b>_</b>      | None   | None    | 8       | <b>Right</b>     | scale 🖉             | S Input    |
| 6          | X6                                                                               | Numeric | 8        | 2                    | T             | None   | None    | 8       | ■ Right          | 🛷 Scale             | S Input    |
| 7          | X7                                                                               | Numeric | 8        | 2                    |               | None   | None    | 8       | Right            | scale 🖉             | > Input    |
| 8          | X8                                                                               | Numeric | 8        | 2                    |               | None   | None    | 8       | ■ Right          | 🛷 Scale             | S Input    |
| 9          | X9                                                                               | Numeric | 8        | 2                    |               | None   | None    | 8       | ■ Right          | 🛷 Scale             | S Input    |
| 10         | X10                                                                              | Numeric | 8        | 2                    |               | None   | None    | 8       | 端 Right          | scale 🖉             | > Input    |
| 11         | X11                                                                              | Numeric | 8        | 2                    |               | None   | None    | 8       | ■ Right          | I Scale             | > Input    |
| 12         | Y1                                                                               | Numeric | 8        | 2                    |               | None   | None    | 8       | Right            | scale 🖉             | S Input    |
| 13         | Y2                                                                               | Numeric | 8        | 2                    |               | None   | None    | 8       | ■ Right          | Scale 🖉             | S Input    |
| 14         | Y3                                                                               | Numeric | 8        | 2                    |               | None   | None    | 8       | Right            | scale 🖉             | S Input    |
| 15         | Y4                                                                               | Numeric | 8        | 2                    |               | None   | None    | 8       | 疆 Right          | 🛷 Scale             | > Input    |
| 16         | <b>Y</b> 5                                                                       | Numeric | 8        | 2                    |               | None   | None    | 8       | ■ Right          | Scale 🖉             | > Input    |
| 17         | FAC1_1                                                                           | Numeric | 11       | 5                    | REGR factor s | None   | None    | 13      | ■ Right          | I Scale             | ➤ Input    |
| 18         | FAC2_1                                                                           | Numeric | 11       | 5                    | REGR factor s | None   | None    | 13      | 疆 Right          | 🛷 Scale             | > Input    |
| 19         | FAC3_1                                                                           | Numeric | 11       | 5                    | REGR factor s | None   | None    | 13      | Right            | Scale               | S Input    |
| 20         | TQM                                                                              | Numeric | 11       | 5                    | TQM           | None   | None    | 13      | ■ Right          | 🛷 Scale             | > Input    |
| 21         | FAC1_2                                                                           | Numeric | 11       | 5                    | REGR factor s | None   | None    | 13      | 疆 Right          | 🛷 Scale             | > Input    |
| 22         | FAC2_2                                                                           | Numeric | 11       | 5                    | REGR factor s | None   | None    | 13      | 署 Right          | Scale 🖉             | S Input    |
| 23         | Kinerja                                                                          | Numeric | 11       | 5                    | Kinerja       | None   | None    | 13      | 署 Right          | Scale 🖉             | > Input    |
| 24         |                                                                                  |         |          |                      |               |        |         |         |                  |                     |            |
| 25         |                                                                                  |         |          |                      |               |        |         |         |                  |                     |            |
|            |                                                                                  |         |          |                      |               |        |         |         |                  |                     |            |
| Data View  | Variable Vie                                                                     | w       | - Klik   |                      |               |        |         |         |                  |                     |            |
|            | ľ                                                                                |         | I        |                      |               |        |         | 1       | BM SPSS Statisti | os Processor is rea | dv         |
|            |                                                                                  |         | <b>1</b> | <u>wi</u> ( <u>×</u> |               | 29 67  |         |         | -                | N 🔺 🕅 🍡             | 12:47      |
|            |                                                                                  |         | -        |                      |               |        |         |         |                  |                     | 08/09/2013 |

Setelah masing-masing variabel di bentuk oleh 1 component matrix, selanjutnya dilakukan analisis linearitas. Karena analisis linearitas berfungsi untuk memenuhi asumsi linear dua VARIABEL.

## CATATAN TAMBAHAN:

• TINGKATAN POSISI.



• UJI LINEARITAS di peruntukan menguji linearitas dua VARIABEL, bukan dua indikator

### UJI LINEARITAS.

Uji Linearitas ada beberapa cara. Berikut ini adalah uji linearitas yang menggunakan cara yang paling sederhana. Yaitu uji linearitas yang menggunakan CURVE ESTIMATION. Langkahnya sebagai berikut:

- 1. Pada posisi Data view di SPSS
  - a. Klik Analyze
  - b. Klik Regrsseion
  - c. Klik Curve estimation, seperti pada tampilan di bawah ini:

| ta *Langka               | 🛓 *Langkah-Langkah Uji Linearitas.sav [DataSet2] - IBM SPSS Statistics Data Editor |                                |                  |                                  |                   |                |                   |                       |              |          |
|--------------------------|------------------------------------------------------------------------------------|--------------------------------|------------------|----------------------------------|-------------------|----------------|-------------------|-----------------------|--------------|----------|
| <u>File</u> <u>E</u> dit | <u>View</u> <u>D</u> ata <u>T</u> ransform                                         | Analyze Direct Marketing Grap  | hs <u>U</u> tili | ties Add- <u>o</u> ns <u>W</u> i | ndow <u>H</u> elp | 0              |                   |                       |              |          |
| 🔁 H                      | 🖨 🛄 🗠 🤉                                                                            | Reports Descriptive Statistics |                  | - 43                             | 14<br>2           |                | 6                 |                       |              |          |
|                          |                                                                                    | Tables                         |                  |                                  |                   |                |                   | Visib                 | le: 23 of 23 | Variable |
|                          | FAC1_1                                                                             | Compare Means                  |                  | TQM                              | FAC               | :1_2           | FAC2_2            | Kinerja               | var          |          |
| 1                        | 1,55853                                                                            | General Linear Model           | 006              | 1,51026                          |                   | -1,73807       | -,32621           | -1,55475              |              | 4        |
| 2                        | -, <b>1</b> 9206                                                                   | Generalized Linear Models M    | 988              | -,19002                          |                   | -,93653        | ,54513            | -1,10965              |              |          |
| 3                        | 1,48062                                                                            | Mixed Models                   | 996              | 1,37512                          |                   | ,08440         | 1,81473           | -,45251               |              |          |
| 4                        | ,61718                                                                             | Correlato                      | 355              | ,62130                           |                   | ,14345         | ,02462            | ,06772                |              |          |
| 5                        | ,77136                                                                             | Bogrossion                     | 227              | 80230                            |                   | -,60021        | 2,43664           | -,85636               |              |          |
| 6                        | ,20653                                                                             | <u>R</u> egression             | Aut <u>A</u> ut  | omatic Linear Mode               | ing               | -,59565        | ,33258            | -,62328               |              |          |
| 7                        | 1,38992                                                                            | Loginear                       | Linear           |                                  | -,21468           | -1,12046       | -,00736           |                       |              |          |
| 8                        | -2,25463                                                                           | Neural Networks                | 🛛 🗹 Cu           | rve Estimation                   |                   | ,65852         | -,04959           | ,50574                |              |          |
| 9                        | -,65810                                                                            | Classify                       | Binary Logistic  |                                  |                   | -,06036        | -1,09230          | ,02481                |              |          |
| 10                       | -2,20515                                                                           | Dimension Reduction            |                  |                                  |                   | -,59252        | 1,29101           | -,79132               |              |          |
| 11                       | -,63071                                                                            | Sc <u>a</u> le •               | Mul              | tinomial Logistic                |                   | ,67503         | ,39324            | ,73616                |              |          |
| 12                       | -,42814                                                                            | Nonparametric Tests            |                  | linal                            |                   | -,51480        | -1,07862          | -,33352               |              |          |
| 13                       | ,97923                                                                             | Forecasting •                  |                  | 2011 (Cal                        |                   | ,08723         | -,20188           | ,27188                |              |          |
| 14                       | -,33696                                                                            | Survival                       |                  | DIL                              |                   | 1,58115        | -,11886           | 1,48163               |              |          |
| 15                       | ,29390                                                                             | Multiple Response              | <u>N</u> or      | nlinear                          |                   | -,94977        | -,54562           | -,83696               |              |          |
| 16                       | ,10242                                                                             | Missing Value Analysis         | 🔛 <u>W</u> e     | eight Estimation                 |                   | 1,96678        | ,83266            | 1,73266               |              |          |
| 17                       | -,12245                                                                            | Multiple Imputation            | <u>₽</u> -S      | tage Least Squares               |                   | -2,02742       | -,96071           | -1,83644              |              |          |
| 18                       | ,07873                                                                             | Complex Samples                | Op               | timal Scaling (CATR              | EG)               | ,43382         | -,78380           | ,53639                |              |          |
| 19                       | ,61507                                                                             | Quality Control                | 811              | ,67667                           |                   | 1,54018        | -1,50425          | 1,88230               |              |          |
| 20                       | 11783                                                                              | ROC Curve                      | 71               | 02062                            |                   | <u>81/13</u>   | 1 12075           | 61/21                 |              | •        |
| Data Viev                | v Variable View                                                                    | IBM SPSS Amos                  |                  | ***                              |                   |                |                   |                       |              |          |
| Curve Esti               |                                                                                    |                                | L.               | 2                                |                   | and the second | IBM SPSS Statisti | rs Processor is ready | , 14:2       | 4        |

Kemudian akan muncul kotak dialog Curve Estimation

- d. Masukan TQM pada kolom Dependen
- e. Masukan Kinerja pada kolom Independen
- f. Aktifkan semua pada kolom model
- g. Klik OK

Seperti tampilan di bawah ini:

| Sebelum di proses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Setelah di proses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Curve Estimation  Constant in equation  X0  X0  X0  X0  X0  X10  Va  Y1  Y1  Y1  Y1  Y1  Y2  Y2  Y3  Case Labels: V Incdef constant in equation  Va  Y2  Y2  Y3  REGR factor  REG | Curve Estimation Curv |

## Kemudian akan muncul hasil output SPSPP seperti tampilan di bawah ini:

#### Model Summary and Parameter Estimates

| Dependent Variable: Kinerja |               |      |     |     |                     |             |       |       |       |  |
|-----------------------------|---------------|------|-----|-----|---------------------|-------------|-------|-------|-------|--|
| Equation                    | Model Summary |      |     |     | Parameter Estimates |             |       |       |       |  |
|                             | R Square      | F    | df1 | df2 | Sig.                | Constant    | b1    | b2    | b3    |  |
| Linear                      | ,005          | ,115 | 1   | 24  | ,738                | -5,964E-017 | -,069 |       |       |  |
| Logarithmic <sup>a</sup>    |               |      |     |     |                     | -           |       |       |       |  |
| Inverse                     | ,000          | ,007 | 1   | 24  | ,933                | -,001       | -,002 |       |       |  |
| Quadratic                   | ,062          | ,766 | 2   | 23  | ,476                | ,187        | -,191 | -,195 |       |  |
| Cubic                       | ,074          | ,587 | 3   | 22  | ,630                | ,221        | ,029  | -,291 | -,097 |  |
| Compound <sup>b</sup>       |               |      |     |     |                     |             |       |       |       |  |
| Power <sup>a,b</sup>        |               |      |     |     |                     |             |       |       |       |  |
| S <sup>b</sup>              |               |      |     |     |                     |             |       |       |       |  |
| Growth <sup>b</sup>         |               |      |     |     |                     |             |       |       |       |  |
| Exponential <sup>b</sup>    |               |      |     |     |                     |             |       |       |       |  |

The independent variable is TQM.

a. The independent variable (TQM) contains non-positive values. The minimum value is -2,24923. The Logarithmic and Power models

cannot be calculated.

b. The dependent variable (Kinerja) contains non-positive values. The minimum value is -1,83644. Log transform cannot be applied.

The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable.

# **ASUMSI LINEARITAS**

DENGAN MENGGUNAKAN METODE CURVE ESTIMATION PADA SPSS HUBUNGAN ANTAR VARIABEL DIKATAKAN <u>TERPENUHI LINEAR</u>, APABILA:

- 1. LINEAR EQUATION = SIG DAN EQUATION MODEL YANG LAIN DIABAIKAN ATAU
- 2. SEMUA MODEL = TIDAK SIG

**SEDANGKAN** HUBUNGAN ANTAR VARIABEL <u>TIDAK TERPENUHI LINIERITAS</u>, APABILA: LINEAR EQUATION = TIDAK SIG, DAN ADA MINIMAL SATU EQUATION MODEL YANG LAIN SIG (Sumber: Solimun, 2013) Hasil Uji Linearitas dengan Model Curve Estimation di atas adalah sebagai berikut:

• Lihat pada kolom sig. Semua Equation Models tidak sig. Berdasarkan kriteria asumsi di atas, maka variabel TQM dengan Variabel Kinerja Memenuhi Asumsi Linearitas.

\*\*\*SENANG BISA BERBAGI ILMU \*\*\*

\*\*\* SELAMAT BEKERJA SEMOGA SUKSES \*\*\*